3.1 Outline

- Relative Entropy
- Jensen’s Inequality
- Data compression

3.1.1 Readings

- Shannon: 5, 6, 7
- CT: 5.1-5.8

3.2 Recap

Let us start by recapping the definition of mutual information. The mutual information $I(X; Y)$ between two random variables X and Y can be defined in the following equivalent ways:

$$I(X; Y) = H(X) + H(Y) - H(X, Y)$$

$$= E \left[\log \frac{p(X, Y)}{p(X)p(Y)} \right]$$

$$= H(X) - H(X | Y)$$

$$= H(Y) - H(Y | X)$$

3.3 Relative Entropy

We first state a theorem about mutual information.

Theorem 1. For random variables X, Y we have:

$$I(X; Y) \geq 0.$$

Proof. Proved later.

In order to prove the above theorem, we will first express mutual information in terms of a more general non-negative quantity called relative entropy.
Definition 1. The relative entropy between two distributions p, q defined on \mathcal{X} is:

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = E_{X \sim p} \left[\log \frac{p(X)}{q(X)} \right].$$

3.3.1 Properties

1. In general, relative entropy is asymmetric ($D(p||q) \neq D(q||p)$), and does not satisfy the triangle inequality. Therefore, it is not a metric.

2. $D(p||p) = 0$.

3. $D(p||q) \geq 0$ for all distributions p, q with equality holding iff $p = q$.

Mutual information between two random variables X, Y can be expressed in terms relative entropy between their joint distribution $p_{X,Y}$ and the product of their marginal distributions $p_X \cdot p_Y$

$$I(X;Y) = \sum_{x,y} p(x,y) \log \frac{p_{X,Y}(x,y)}{p_X(x) \cdot p_Y(y)} = D(p_{X,Y}||p_X \cdot p_Y). \quad (3.1)$$

We will prove Property 3 using Jensen’s inequality and thereby prove Theorem 1.

3.3.2 Jensen’s inequality

A real-valued function is convex, if the line segment joining any two points on the function curve lies above or on the curve. Mathematically,

Definition 2. Convexity: A real-valued function $f(x)$ is said to be convex over an interval (c, d) if $\forall x_1, x_2 \in (c, d)$ and $0 \leq \lambda \leq 1$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2).$$

For a doubly differentiable function f, convexity is equivalent to

1. $f'(x)$ is non-decreasing.

2. $f''(x) \geq 0$.

Note: A function f is a concave function if $-f$ is a convex function.

Theorem 2. Jensen’s Inequality: For a convex function f, and a random variable X,

$$f(E[X]) \leq E[f(X)].$$
Example: Consider a uniform random variable X defined on set $\{a, b\}$ and a convex function f as shown in Figure 3.1. By Jensen’s inequality, $0.5(f(a) + f(b)) \geq f(0.5(a + b))$, which can also be inferred from Figure 3.1.

Theorem 3. (Property 3) Relative entropy between two distributions p and q is non-negative:

$$D(p||q) \geq 0$$

Proof. We prove relative entropy is non-negative by applying Jensen’s inequality to convex function $-\log(x)$ and random variable $\frac{q(X)}{p(X)}$,

$$D(p||q) = E\left[-\log\frac{q(X)}{p(X)}\right]$$

(using Jensen’s inequality) $\geq -\log E\left[\frac{q(X)}{p(X)}\right]$

$$= -\log \left(\sum_x p(x) \frac{q(x)}{p(x)}\right)$$

$$= 0 \quad \text{(3.2)}$$

Corollary 1. For random variables X and Y,

$$H(X|Y) \leq H(X).$$

Interpretation in words - The nonnegativity of mutual information implies that “on average” the entropy of X conditioned on the observation $\{Y = y\}$ is equal to or lesser than the entropy of X (which intuitively makes sense).

Common pitfall: The above law (1) is applied to $H(X|Y)$, which is an averaged quantity: $H(X|Y) = \sum_y p(y)H(X|Y = y)$. However, $H(X|Y = y) \leq H(X)$ is not necessarily
true for all y, i.e., we could have cases where $H(X|Y=y) \geq H(X)$.

Using the nonnegativity property of relative entropy, we show that - among all possible

distributions over a finite alphabet, the uniform distribution achieves the maximum entropy.

Consider random variable X defined on an alphabet \mathcal{X} of size n. Let U be the uniform

random variable defined on \mathcal{X}. Then,

Theorem 4. $H(X) \leq H(U)$

Proof.

$$H(U) - H(X) = \sum_{x} \frac{1}{n} \log n + \sum_{x} p(x) \log p(x)$$

$$= \sum_{x} p(x) \log n + \sum_{x} p(x) \log p(x)$$

$$= \sum_{x} p(x) \log \frac{p(x)}{1/n}$$

$$= D(p||u) \quad \text{(where } u \text{ is the uniform function)}$$

$$\geq 0 \quad \text{(using Property 3)}.$$

\[\square \]

3.4 Entropy and Data compression

Entropy is directly related to the fundamental limit of data compression. We consider two

simple examples to get an intuition of the preceding statement:

1. For a sequence of i.i.d random variables $X_i \sim Bern(1/2)$, we need $n \times H(X_1) = n$ bits
to encode X_1, X_2, \ldots, X_n.

2. However, for a sequence of i.i.d random variables $X_i \sim Bern(1/3)$, we need only

 $n \times H(X_1) \approx 0.918 n$ bits to encode X_1, X_2, \ldots, X_n.

From the above two examples, we infer that the number of bits required to encode a sequence

of i.i.d random variables depends on their entropy.

Rough Analysis: Consider a sequence of i.i.d random variables $X_i \sim Bern(p)$. The probability of a sequence $\{x_i\}$ with k ones and $n - k$ is

$$p(x_1, x_2, \ldots, x_n) = p^k (1 - p)^{n-k}$$

$$= 2^{k \log p + (n-k) \log (1-p)}$$

$$= 2^{-n \left[\frac{k}{n} \log p + \left(1 - \frac{k}{n}\right) \log (1-p) \right]}$$

$$\approx 2^{-n H(X_1)} \quad \text{(by L.L.N).}$$

3-4
So although there are 2^n possible sequences, the “typical” ones will have probability close to $2^{-nH(X_1)}$. Hence we can think of the source as having roughly $2^{nH(X_1)}$ typical sequences each with roughly the same probability. Thus, we need “roughly” $nH(X_1)$ bits to encode \(\{X_i\}_{i=1}^n \sim Bern(p) \). This argument will be made rigorous in the next set of lecture notes.

Theorem 5. n i.i.d random variables distributed as $X \sim P$, can be compressed using $nH(X)$ bits.

The proof uses weak law of large numbers and will be discussed in the next set of lecture notes.

![Data compression diagram](image3.2)

Figure 3.2: Data compression.